
A Document-based Knowledge Discovery with
Microservices Architecture

Habtom Kahsay Gidey, Mario Kesseler, Patrick Stangl, Peter Hillmann, and
Andreas Karcher

Universität der Bundeswehr München, Germany
{habtom.gidey, mario.kesseler, patrick.stangl, peter.hillmann,

andreas.karcher}@unibw.de

Abstract. The first step towards digitalization within organizations lies
in digitization - the conversion of analog data into digitally stored data.
This basic step is the prerequisite for all following activities like the digi-
talization of processes or the servitization of products or offerings. How-
ever, digitization itself often leads to “data-rich” but “knowledge-poor”
material. Knowledge discovery and knowledge extraction as approaches
try to increase the usefulness of digitized data.
In this paper, we point out the key challenges in the context of knowledge
discovery and present an approach to addressing these using a microser-
vices architecture. Our solution led to a conceptual design focusing on
keyword extraction, similarity calculation of documents, database queries
in natural language, and programming language independent provision
of the extracted information. In addition, the conceptual design provides
referential design guidelines for integrating processes and applications
for semi-automatic learning, editing, and visualization of ontologies. The
concept also uses a microservices architecture to address non-functional
requirements, such as scalability and resilience. The evaluation of the
specified requirements is performed using a demonstrator that imple-
ments the concept. Furthermore, this modern approach is used in the
German patent office in an extended version.

Keywords: knowledge discovery · ontology · microservices · servitiza-
tion.

1 Introduction

Digitization coupled with fast-paced advances in various areas of computing has
resulted in an unprecedented volume of data. Every application produces vol-
umes of data for which usable information must be searched and analyzed. This
data growth, in return, challenges existing knowledge systems in knowledge-
based organizations. Taking the intellectual property (IP) institutions as an ex-
ample, the European Patent Office has experienced a boom in technical patent
applications since 2009. Patent applications have increased by more than 34
% [1]. Success in digitization has also intensified the increase in the patent ex-
amination workload by changing how IP applications are submitted and pro-
cessed. While almost 100 % of all patent applications were filed in writing in



2 H.K Gidey et al.

2004, nearly 90 % of submissions are now made digitally [2]. Processing within
the office is fully digital. The figures are likely similar for many other property
rights. The growing number of applications also increases the workload for patent
offices worldwide. In particular, the search, retrieval, and examination workload,
which takes up the largest share of time in granting a patent, increases with each
patent application. For example, some patent offices completed more than 40,000
examination procedures in 2019, which is a significant increase in workload in
patent examinations [2]. However, this processing capacity is small compared to
the 67,000 new applications in the same year. The examination time expenditure
also signifies the high level of knowledge that patent examiners must maintain to
carry out their daily work. It starts with classifying patent applications accord-
ing to the international classification scheme, particularly the search for similar
patents. Then, a patent examiner must complete searches and examinations not
to grant the IP right erroneously, requiring corresponding domain knowledge for
the examiner. Consequently, the training period of a patent examiner is five years
before he can perform patent examinations entirely independently. Previous at-
tempts to raise the number of examinations processed have been to increase the
number of patent examiners.

However, the goal must be to use knowledge systems to support the knowl-
edge worker and change the “data-rich”, but “knowledge-poor” scenario by re-
ducing the processing times for classification, search, and examination, and the
training time for new patent examiners. Intellectual property institutions process
digitized unstructured documents instead of structured information.

As a result, this paper presents a contribution, a conceptual model for KD,
that addresses the knowledge systems challenges in document-based knowledge
discovery (KD) with a highly flexible microservices architecture (MSA). The
work also sets the background and related work to the contribution and evaluates
the model with an implementation.

2 Research Context

KD is a topic of broad scientific interest in information systems research. Auto-
mated processing of unstructured data classification, retrieval, and testing is of
particular interest for this work. In this context, the knowledge system for KD
is set around the processes of classification, search, and examination of patent
applications. The classification of a patent application serves the correct assign-
ment of a patent submitted to the responsible examining office. For this purpose,
the International Patent Classification (IPC) scheme is applied, which provides
uniform hierarchical classes and specific sub-classes [3].

First, patent applications are classified roughly into the relevant classes dur-
ing the classification process. Next, the applications are submitted in a round-
robin procedure to the presumably competent preliminary examiner based on
the classification. Then, the latter either confirms the classification carried out,
refines it according to sub-classes, or determines that the assigned class is incor-
rect. In case of an error, the final classification is determined by other possibly
competent auditing bodies of auditors.



A Document-based Knowledge Discovery with Microservices Architecture 3

The classification of the applications is based on the intellectual registration
of the contents of the respective patent specification. In particular, the claims,
descriptions, or attachments are of specific interest. The focus of the intellec-
tual content to be examined varies from one examination area to another. For
example, in the case of applications in chemistry, the representations of chem-
ical compounds are decisive, whereas, in electrical engineering, the claims for
classification are more important.

A search process always precedes the patent examination process, which looks
for similarities among applications. In general, this process follows a sequence
characterized by the intellectual acquisition of the contents of the patent appli-
cation and the search for already filed applications with similar contents. These
are intelligent comprehension of the contents of the new patent application,
compilation keywords of the technical concepts that characterize the described
patent, search of referenced documents or documents that in turn reference this
application, and then search for the assigned keywords in the documents of the
corresponding IPC class.

Similar to the classification, the contents essential for the search differ de-
pending on the examination field. When searching in the respective IPC classes,
up to 2000 documents may have to be searched for similar contents and concepts.
The concepts can be realized by technical drawings or defined descriptively by
terms and relations to other terms. The search for similar concepts also explains
the high time expenditure of a patent examination.

2.1 Example Scenario

The following scenario describes the vision of the new examination process of a
patent application as it appears after a potential deployment of an exemplary
KD system: Julia is one of 700 examiners and 2000 other employees at a hy-
pothetical patent office. She works at different office locations, including from
home. Currently, she is a trainee investigator and has to process the new appli-
cations assigned independently as part of her training. She has just received a
patent application from a company working on cognitive systems. Since all new
applications are automatically classified and assigned keywords when they arrive,
the system notifies her immediately after a submitted application. Opening the
patent specification document, she gets live support with various keywords that
capture the core of the application. Julia then reads the relevant passages of the
patent specification and determines the classification recommendations are valid.
She now has two different ways to start searching for similar patent applications.
In the first case, she receives a list of all other applications sorted by relevance to
which comparable keywords have been assigned. In the second approach, she ac-
tively searches for comparable content. To minimize the training effort, she can
ask the question in a natural language. Julia thus writes into the search field:
‘Show me all applications with the keyword cognitive systems.’ She receives a list
of all applications containing the keywords, sorted by relevance. In both cases,
she has an up-to-date and limited list of documents based on which she can make
an intellectual comparison of the keywords without having to click through sev-
eral hundred applications. Since Julia is still a trainee, she needs to understand



4 H.K Gidey et al.

the interrelationships of patents in cognitive systems before comparing individ-
ual patent applications. For this purpose, she looks at an ontology provided by
the system, which represents the concepts and relationships between cognitive
systems and other related topics - such as cognitive models and cognitive archi-
tectures. After comparing submitted applications, Julia decides on the novelty of
the patent application.

2.2 Research Questions

We posed the following research questions (RQs) to conceptualize and evaluate
the document-based KD solution. RQ1: What are the workload challenges for
knowledge workers in existing workflows of a patent application and examina-
tion? RQ2: What are the main aspects of knowledge systems that address prac-
tical KD requirements in processing and examining patent applications? RQ3:
What are the ways to realize architecturally significant requirements of a future-
proof document-based KD system in patent classification and examination?

3 Background and Related Works

Architectural approaches and design decisions make significant contributions to-
ward making software systems scalable, resilient, and future-proof [4–6]. The
MSA is, for instance, an architectural pattern that has demonstrated value in
addressing the challenges caused by the increased need for rapid digitalization
and servitization in data-rich domains [7,8]. The MSA separates application ser-
vices based on business capabilities or a domain’s functional requirements [9].
Services are then restricted on domain context and size [10]. They are also de-
ployed, managed, and scaled independently of each other. Similarly, services
communicate with each other independently with messaging protocols such as
HTTP/REST. [9,11]. Due to the strongly decoupled micro-sized services, MSA’s
software components are easy to maintain or even replace. As a result, MSA has
also been a preferred path for architecture-driven software modernization [12].
MSA further addresses the architectural challenges of KD by componentizing
the extensive functional domains such as natural language processing, keyword
extraction for text mining, and ontology management into services [10]. As a
process of useful knowledge extraction from unstructured documents, document-
based KD has distinct technical requirements that differ from other types of
KD. [13]. The key differences lie in the requirements for which the need is ‘in-
formation retrieval’ vs. ‘text mining.’ According to Ben-Dov et al., this topic
corresponds to the sub-area ‘information retrieval,’ which is concerned with find-
ing new information across individual data records [14]. Hotho et al. [15] also
show the lack of clarity in the definition of the term itself, which ranges from
information extraction to an all-encompassing ‘knowledge discovery’ process.

Besides, MSA has grown as an architecture of choice for diverse applications
in software development practices [16]. Although literature presents several MSA
implementations for a growing number of software solutions, very few select
exist that address architectural challenges in KD services. Singh et al. [17], for
example, have implemented a reference application based on a microservice-
based model, which they proposed for Big Data KD. Vekaria et al. [18] also have



A Document-based Knowledge Discovery with Microservices Architecture 5

presented a chatbot-based recommender system for Science gateways to support
KD with augmentable modules as microservices. However, those few examples
have no focus on the challenges of document-based KD and significantly differ
from our solution of document-based KD with an MSA.

4 Conceptual Approach

In the following, we conceptualize the essential aspects of KD application with
MSA to address knowledge-intensive document processing challenges.The con-
ceptual design determines the individual microservices’ specification, the neces-
sary data model, and each service’s data persistence. Furthermore, we briefly
describe individual microservice size, functionality, and communication between
the respective services. We also describe the design decisions made throughout
the conceptualization, alternative design rationales considered, advantages and
disadvantages of each possible design choice, and the selected design justifica-
tions.

4.1 The Microservices Specification

We specify the necessary microservices into two parts. The first part specifies the
microservices related to the domain, KD requirements. The second part specifies
the services significant for the infrastructure of the MSA.

Domain Related Microservices: In Fig. 1, following Domain-Driven De-
sign [19], we identify domain-related microservices from the four subdomains.
The document processing subdomain contains the functionalities for determin-
ing keywords and calculating the similarity of documents. The Querying domain
provides all query mechanisms for standard queries for keywords and queries via
Natural Language Interfaces. The domain Ontology-Learning contains the miss-
ing layers for automatically extracting ontologies from unstructured text. Since
term extraction has already been done in the Document Processing domain, all
tasks are built on top of it after the Ontology Learning Layer Cake. The last

Fig. 1. Subdomain structure Fig. 2. Document processing structure

domain to note is Ontology Management, which allows the editing and visualiza-
tion of automatically generated ontologies. The subdomains form self-contained
units, which have the following advantages:

1. Self-contained, independent data models,
2. Independent scalability of each subdomain,
3. Internal subdomain changes do not affect the entire system.



6 H.K Gidey et al.

Independence of the individual domains at runtime, for example, queries via
querying, can be performed without functioning document processing. However,
independence does not mean that the system can work in a meaningful way
without processed documents. A filling with documents from which keywords
and ontologies are extracted is a prerequisite for the system’s usability. Fol-
lowing the top-down approach, these coarse sub-domains can now be precisely
subdivided into ‘sub-sub domains.’ Thus, a structure can be determined for the
processing of the documents, as shown in Fig. 2. Here, the service ‘Preprocess-
ing’ takes over converting the specified file formats into pure, machine-readable
text. The service ‘Termextraction’ extracts the keywords from the text, and the
service ‘SimComputation’ computes the similarities between the newly added
documents and the documents already existing in the system. Based on the con-
troller and reporter pattern, the parent service Document-Processing handles
the processing control and maintains the documents’ status.

An alternative approach for the similarity analyses would be to determine
the similar documents only at the time of a potential request to the system - i.e.,
only when similar documents are to be output for a given document. However,
this has a disadvantage: the user expects a prompt, timely response to a request.
Similarity computations are performed only at a point in time, resulting in higher
requirements on the performance of the service, which has to process several
requests simultaneously and perform the computations. An improvement of the
situation at the user request time would occur if the service to which the request
goes does not compute the analysis at the request time but at the integration
time of a new document. However, the approach chosen here has the advantage
over the approach in the service in which the queries are processed that only
database operations are running, and no additional computations have to be
performed. This ensures the highest possible performance for queries by users.

For the subdomain ‘Querying,’ a microservices structure results as shown
in Fig. 3. Here, the individual subordinate services provide different possibil-
ities for searching. The service ‘Searching’ provides web services for standard
queries for similar documents or keywords. The service NliProcessing, on the
other hand, processes queries formulated in natural language. The parent ser-
vice ‘Querying’ bundles the queries, can be used to provide caching for searches
and search results and is furthermore available for aggregating search results
from the different search possibilities. Caching within the parent service allows
very fast response times. At the same time, the splitting into individual subor-
dinate services ensures that in case of a failure of a sub-service not all queries
come to nothing. Fig. 5 shows the exemplary service structure for the ontology

Fig. 3. Querying subdomain Fig. 4. Ontology management



A Document-based Knowledge Discovery with Microservices Architecture 7

learning subdomain taken from the ontology learning layer cake as a basis for
defining the subordinate microservices according to the presented layers. After
determining the synonyms for the extracted keywords in the service ‘Synonym-
Recognition,’ the concepts are determined in the service ‘Concept-Generating,’
and the relations between the individual concepts are extracted in the follow-
ing service ‘Relations-Extraction.’ The rules or axioms, which can be derived
automatically from the previous information, are created in the service ‘Rules-
Generating.’ As can be seen, the keywords extraction service is omitted here
since this has already been performed in the document processing context. Since
the existing and outdated solutions of ontology learning perform the whole task
of ontology learning as a black box in an application, the problem arises that an
ideal-type separation into the layers of the ontology learning layer cake seems
impractical.

The structuring into a superordinate and a subordinate service allows the
integration of a single ontology learning framework into the learning service or
an ideal-typical implementation where the ontology learning service takes over
the control of the workflow. For the last subdomain, ontology management, a
microservices structure results as shown in Fig. 4. The automatically generated
ontologies additionally require monitoring and editing capabilities. Editing ca-
pabilities are provided by the service ‘Ontology-Editing,’ whereas the service
‘Ontology-Visualisation’ provides visualization possibilities for the presentation
of the ontologies. The higher-level service ‘Ontology-Managment’ is primarily
used for forwarding the queries and the learned ontologies.

Fig. 5. Ontology-Learning subdomain Fig. 6. System structure with components

Infrastructure Related Microservices: Loose coupling between the individ-
ual microservices is a fundamental advantage of the MSA. At the same time, it
leads to the need to integrate services for localizing the individual microservices.
For the localization of all microservices instances, a registration and discovery
service is necessary, which is continuously informed about available instances of



8 H.K Gidey et al.

services and returns an instance of the desired service to the caller upon request.
A gateway service must also be integrated to hide non-public interfaces from ex-
ternal clients. Additionally, other infrastructure services can be integrated, such
as authentication. After the integration of the newly added infrastructure com-
ponents, the overall system corresponds to Fig. 6. In addition to the functional
and infrastructural services listed here, further services for persistence and asyn-
chronous communication are necessary. These will be integrated successively in
the following chapters.

4.2 Data Model

The conceptual approach divides the data model into internal and external el-
ements. The internal data model serves data processing within the individual
microservices and data transfer between them. The external data model is used
for communication with the clients who access the rest of the web services pro-
vided.

Internal Data Model: The services data model results altogether from the
required input of the service and its output, which can represent the input of
another service or the information requested by the user. For this task, a distinc-
tion must be made between the subdomains of document processing or querying
and the subdomains focusing on learning and managing ontologies. For the sub-
domains Document-Processing and Querying, an overall data model is composed
of the data models of the subordinate services.

In addition, it requires the ability to uniquely identify a file and the infor-
mation derived from it across the individual microservices. For this purpose, an
ID must be assigned while uploading a document, which is available in the data
model of all further microservices. The algorithm used must also be provided to
the services’ output to meet different keyword extraction and similarity analy-
sis methods requirements. For the data model of the ontology-related services,
it should be noted that the data input for ontology management and ontology
learning services is different. The data model of the Ontology-Management ser-
vice is the ontology itself. Since this service provides methods or applications for
manual editing of ontologies, the data model of the input also corresponds to
the data model of the output. In both cases, editing and visualization ontologies
are involved.

This restriction does not apply to the ontology learning service. Here, two
factors have to be taken into account: first, the data model of a newly processed
document from which further information for new or existing ontologies shall be
extracted by processing in the ontology learning process, which corresponds to
the data model of the term extraction service and second, the data model of the
ontology that is either already exists due to automatic ontology extraction of
previous runs or is provided to the ontology learning microservice after a manual
modification via the ontology editing microservice.

Thus, the picture for the ontology-learning microservice is that both a data
model for reproducing a new document and a data model for reproducing ontolo-
gies are necessary. For this purpose, the Web Ontology Language is chosen. This



A Document-based Knowledge Discovery with Microservices Architecture 9

decision is equally viable if a microservices structure is envisaged, following the
Ontology Learning Layer Cake layers. OWL is also used as a data model for the
ontology management subdomain since existing applications support this data
model either directly or via plugins.

External Data Model: A different approach has to be chosen for the data
model used to communicate with the clients. Decisive here is the web services
that are made available to the client. In this concept instance, a distinction has
to be made between document processing, querying, and ontology management
domains. The domain Ontology-Learning only processes data internally and has
no external interfaces. The domain Ontology-Management allows the processing
and visualization of ontologies. Since only existing applications like WebProtege
or WebVOWL are linked here, reference shall be made to their possibilities to
download data. In querying, a distinction has to be made between Searching and
NliProcessing. While the Searching Microservice only allows predefined queries
defined in requirements, the NliProcessing Microservice allows free text input.
Since no exact data structure of the response is known under these conditions,
a generic data model must be implemented.

Persistence: To conclude the chapter on data models, the persistence of the
data in the individual microservices shall be considered. Here, a basic decision
between relational and NoSQL databases has to be made for each microservice.
The question of the type of database used depends primarily on the structure
of the data to be stored. The simpler the data structure, the better the data
can be mapped into an SQL database without complex joins. The more com-
plex or flexible the data structures are, the easier it is to store data in NoSQL
databases. This is also true for large amounts of text or when the data struc-
ture to be stored changes. NoSQL databases have supported both aspects since
their creation. The full support of reactive programming by NoSQL databases
is another advantage, especially in areas where performance plays an important
role. The databases shown in Fig. 7 are chosen for the persistence layer for this
concept considering the reasons above. The schemas of the individual databases
are based on the classes of the internal data model. Persistence in caching in
the Querying Microservice relies on a NoSQL database since different results
with different structures have to be kept. In the NliProcessing microservice, on
the other hand, the use of an SQL database is necessary. Here, however, it is
additionally important to adapt the database schema to the possibilities of the
service to convert text into SQL commands since not all SQL constructs are
supported. In all microservices of the ontology management sub-domain, the
ontologies in OWL format are also kept in a no-SQL database.

4.3 Communication

After conceptualizing the data models, we defined and specified the commu-
nication between the individual services on three levels. These are the com-
munication between client and public interfaces, the communication within the
cross-subdomain microservices, and data transfer within the domain-specific mi-
croservices. The specification is limited to functional communication. Moreover,



10 H.K Gidey et al.

Fig. 7. Databases for the microservices Fig. 8. Cross-domain communication

communication to the infrastructure services is exclusively synchronous and will
not be considered.

External communication: A client accesses the public interfaces via the web
services provided by the system. The services mentioned are offered in the form
of URLs and accept data synchronously or deliver information synchronously.
These are transmitted according to REST-compliant standards, i.e., marshaling
to or unmarshalling from JSON takes place. Only standard HTTP methods such
as POST and GET are used for communication. This applies to all public inter-
faces, except for the interfaces provided in the ontology management domain,
since there are no web service-compatible applications that could be integrated.
The interfaces provided have to be used to integrate an existing ontology manage-
ment software like WebProtégé. This also applies to the visualization component
to be integrated. The decision in favor of synchronous communication between
client and system is based on the expectation of a timely and high-performance
response, even though asynchronous communication is preferable in MSAs.

Cross-domain technical communication: Communication within the sys-
tem across the individual subdomains is asynchronous since this type of data
transfer creates additional decoupling. This requires an additional messaging
service in the system that provides the necessary queues. The standard JSON is
again used as the data transfer format, and the FIFO principle is used to process
the messages in the queues. The entire cross-domain communication then cor-
responds to Fig. 8. Since the further processing or provision of the data within
the subdomains Querying and Ontology Learning depends on the preprocessing
within Document Processing, the data is forwarded asynchronously from Docu-
ment Processing to the services mentioned earlier. However, data querying is not
forwarded through the higher-level Querying microservice to lower-level Search-



A Document-based Knowledge Discovery with Microservices Architecture 11

ing and NliProcessing services but directly to the latter two. This is done with
regard to the performance and error resilience of the querying services. This ap-
proach ensures that the querying service is only burdened by the requests from
the outside and does not have to process the forwarding of the newly processed
documents additionally. Second, this means only two instead of three queues are
needed in the messaging service, and the network load is reduced by a third.
Third, it allows new documents to be integrated into the two lower-level mi-
croservices even if the querying service is down or overloaded.

This approach is not target-oriented when providing data for the Ontology-
Learning service. Since this microservice does not provide any public interfaces,
allowing for future changes regarding the pragmatic approach described above
or a split along with the layers of the Ontology Learning Layer Cake, the asyn-
chronous delivery of the data to the parent Ontology-Learning Microservice is to
be preferred. Furthermore, for the cases considered so far, the response of suc-
cessful processing to document processing is also asynchronous. The last thing
to specify is the communication between the ontology-learning and ontology-
management microservices. The ontology management applications do not need
direct input from the document-processing microservice but only the ontologies
elaborated in the ontology-learning subdomain. At the same time, ontology man-
agement, in turn, has to provide the ontologies revised manually to the ontology
learning microservice. Thus, data exchange has to take place in both directions,
whereby asynchronous communication is also preferred in each case.

Communication in document processing: In the Document-Processing
subdomain, internal communication with the subordinate microservices occurs
in both asynchronous and synchronous forms. The document processing mi-
croservice accepts documents uploaded by the client synchronously and forwards
the entire processed result to querying and ontology learning subdomains asyn-
chronously. The processing of the documents takes place in individual steps,
which are broken down into subordinate microservices. The communication can
be differentiated into the normal processing flow and the data retrieval in the
event of an error. The document processing service provides the individual sub-
ordinate microservices with the required input data asynchronously and receives
the result asynchronously at the end of the respective processing step. In the
event of an error, the subordinate microservices provide synchronous interfaces
to return the analyzed result of a document that has already been processed.
This allows the document processing service to fall back on the result of the pre-
vious processing step if errors occur and feed it back into the normal workflow.

Communication in Querying: The communication in the Querying subdo-
main is a purely synchronous data transfer. The querying microservice mediates
with the respective subordinate microservices. In addition to the publicly pro-
vided interfaces, the services in this domain do not include any other interfaces.

Communication in Ontology-Learning: Communication in the ontology-
learning subdomain is structured asynchronously. This is due to the potentially
long runtime of the generation of ontologies and the individual steps involved. It



12 H.K Gidey et al.

should also be noted that an asynchronous workflow can also be set up in parallel
to the procedure in document processing when using individual microservices per
task of the Ontology Learning Layer Cake.

Communication in Ontology Management: Data transfer in ontology man-
agement is also asynchronous. The ontologies generated in the Ontology Learning
domain and edited via the Ontology Editing service are provided asynchronously
to other services.

Ontologies provided by the Ontology-Learning service are forwarded asyn-
chronously to both subordinate microservices via the Ontology Management mi-
croservice. Ontologies that the Ontology-Editing service has edited are, in turn,
provided asynchronously to Ontology-Learning and the Onto-Visualization ser-
vice via the Ontology Management service. In addition to this asynchronous
communication, synchronous public interfaces forward the user to the web ap-
plications for editing or visualization.

After integrating communication and persistence into the system, the struc-
ture shown in Fig. 9 results for the entire system. Solid lines with queues be-
tween the individual microservices correspond to asynchronous communication
and dotted lines to synchronous communication. The synchronous communica-
tion of all microservices to the discovery service is hidden in the diagram.

Fig. 9. Overview of the system structure



A Document-based Knowledge Discovery with Microservices Architecture 13

5 Evaluation and Assessment

5.1 Implementation

The conceptual model discussed in the previous section is implemented in sepa-
rate domain-relevant components where microservices are also divided into tech-
nical and infrastructure-related services. Besides, all the microservices described
are implemented in Java using the Spring Boot Framework and Docker. Some
parts are fully implemented, such as Document-Processing and Querying mi-
croservices. However, the Ontology-Management service is partially implemented
using existing ontologies. The implementation is set up as a multi-project build
containing a separate Gradle project for each required microservice.

5.2 Evaluation

We evaluate our concept according to our scenario in Section II, based on typical
processes at a patent office. It includes using an MSA, RESTful APIs, existing
libraries, frameworks, and services already in use, with an example scenario of a
patent office.

For the testing, we used the Postman tool and cURL, which allows for sending
whole collections of requests. For instance, the requirement, which entails the
application to process PDF format documents, is assessed as the first step in
the success of uploading documents via the provided REST API. In this case,
forty document packages related to patents and science were uploaded, and the
processing was monitored. The success of the upload was traced in the database
successfully.

A second requirement, which entails automatic text extraction from the avail-
able documents, evaluates the preprocessing microservice. Proof of successful
processing can also be observed on the content of the microservice’s database.
Fig. 10 shows a section of the ‘Extractions’ collection after successful text ex-
traction. Other requirements, such as the automatic extraction of keywords from

Fig. 10. Extract from collection ‘Extractions’ with extracted text.

documents and presenting a requested list of keywords for each document, can
be evaluated together.

Furthermore, the evaluation of the requirement that the application must
support integrating tools for visualizing ontologies is conducted assuming the



14 H.K Gidey et al.

ontology in OWL format exists. The visualization component WebVowl is called
with an existing ontology in OWL format. Fig. 11 shows this component after
calling the web service ‘ontomanagement/getVisualisation’.

Fig. 11. Redirection to WebVowl

6 Conclusion

KD is an integral part of knowledge-intensive organizations and their processes
servitization. To this end, in this paper, we have presented a conceptual model
and an evaluation of document-based KD with an example scenario at an intel-
lectual property institution. The conceptual approach mainly focused on using
MSA to model and implement four main domain-relevant microservices: doc-
ument processing, querying, ontology learning, and ontology management ser-
vices. Due to its extensibility, MSA is an ideal basis for creating knowledge-based
applications. Workflows for processing documents can be easily implemented
and almost completely separated from the provision of the resulting informa-
tion. As a result, keyword extraction, similarity determination, and provision
of information based on a RESTful API were successfully implemented for the
document-based KD. Then, examples of key requirements were demonstrated on
how implemented services were assessed and examined. The benefits of the KD
implemented are identifying keywords from knowledge-intensive documents, sup-
porting the recognition of similarities among them, and generating and retaining
essential knowledge of the documents.

As an outlook, future work can extend this concept from several points of
view. An apparent investigation is the creation of a microservice-based concept
of the ‘Ontology Learning Layer Cake.’ Furthermore, the general consideration
of NLP-based problems is interesting. The question to be answered here is how
small-scale NLP tasks can be decomposed into individual microservices to act
as part of different problem-specific NLP tasks. Further research based on this
work could, in turn, aim to develop MSA-based NLP analysis frameworks.



A Document-based Knowledge Discovery with Microservices Architecture 15

References

1. EPO. Epo - statistics and trends. https://www.epo.org/about-us/annual-reports-
statistics/statistics.html, 2020. [Online; accessed 21-November-2021].

2. DPMA. Deutsches patent- und markenamt: Deutsches patent- und markenamt
produktiv wie nie zuvor. https://bit.ly/3yk8NBJ, 2020. [Online; accessed 18-
November-2020].

3. IPC. World intellectual property organization: International patent classifica-
tion (ipc). https://www.wipo.int/classifications/ipc, 1971. [Online; accessed 18-
November-2020].

4. Frank J Furrer. Future-Proof Software-Systems: A Sustainable Evolution Strategy.
Springer, 2019.

5. Anton Jansen and Jan Bosch. Software architecture as a set of architectural design
decisions. WICSA ’05, Washington, DC, USA, 2005. IEEE Computer Society.

6. Habtom Kahsay Gidey, Diego Marmsoler, and Jonas Eckhardt. Grounded archi-
tectures: using grounded theory for the design of software architectures. In 2017
ICSAW. IEEE, 2017.

7. Marko Kohtamäki, Vinit Parida, Pankaj C Patel, and Heiko Gebauer. The rela-
tionship between digitalization and servitization: the role of servitization in cap-
turing the financial potential of digitalization. Technological Forecasting and Social
Change, 151, 2020.

8. Sandra Vandermerwe and Juan Rada. Servitization of business: adding value by
adding services. European management journal, 6(4), 1988.

9. Chris Richardson. Microservices patterns. Manning Publications Company,, 2018.
10. Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,

Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. Present and ulterior software engineering, 2017.

11. Martin Garriga. Towards a taxonomy of microservices architectures. In Int. Con-
ference on Software Engineering and Formal Methods. Springer, 2017.

12. Holger Knoche and Wilhelm Hasselbring. Using microservices for legacy software
modernization. IEEE Software, 35(3), 2018.

13. Helena Ahonen. Knowledge discovery in documents by extracting frequent word
sequences, 1999.

14. Moty Ben-Dov and Ronen Feldman. Text mining and information extraction. In
Data Mining and Knowledge Discovery Handbook. Springer, 2005.

15. Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A brief survey of text
mining. In Ldv Forum. Citeseer, 2005.

16. Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on architecting
microservices: trends, focus, and potential for industrial adoption. In 2017 ICSA.
IEEE, 2017.

17. Neelam Singh, Devesh Pratap Singh, Bhasker Pant, and Umesh Kumar Tiwari.
µbigmsa-microservice-based model for big data knowledge discovery: Thinking be-
yond the monoliths. Wireless Personal Communications, 2020.

18. Komal Vekaria, Prasad Calyam, Sai Swathi Sivarathri, Songjie Wang, Yuanxun
Zhang, Ashish Pandey, Cong Chen, Dong Xu, Trupti Joshi, and Satish Nair.
Recommender-as-a-service with chatbot guided domain-science knowledge discov-
ery in a science gateway. Concurrency and Computation, 2020.

19. Eric Evans and Eric J Evans. Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.


